1,2- UND 1,3-DIAZA-ALLYL-RADIKALE Wilhelm Ahrens und Armin Berndt^X

Fachbereich Chemie der Universität, 355 Marburg, Lahnberge (Received in Germany 26 August 1974; received in UK for publication 13 September 1974)

Bei der oxidativen Dimerisierung von Hydrazonen $\underline{1}$ bzw. Amidinen $\underline{2}$ werden 1,2-bzw. 1,3-Diaza-allyl-Radikale $\underline{3}$ bzw. $\underline{4}$ als reaktive Zwischenstufen postuliert¹⁾. Ein direkter physikalischer Nachweis dieser Radikale gelang bisher nicht.

Wir konnten jetzt die ersten Vertreter der Radikale des Typs 3 und 4 ESR-spektroskopisch eindeutig nachweisen und charakterisieren (s. Daten der Tabelle). Aus dem Phenylhydrazon $\underline{1a}^{+}$ ($R^1=R^2=C(CH_3)_3$, $R^3=C_6H_5$) des Di-t-butylketons erhielten wir durch Oxidation mit PbO2, Ag2O oder t-Butoxy-Radikalen, die photochemisch aus Di-t-Butylperoxid erzeugt wurden²), das Radikal 3a, das bei 10° C in benzolischer Lösung monatelang stabil ist. Erst beim Erwärmen auf 10° C nimmt die Radikalkonzentration langsam ab. Bei der Oxidation sterisch weniger gehinderter Hydrazone ($R^1=R^2=C_6H_5$, $R^3=C_6H_5$ oder $C(CH_3)_3$) konnten dagegen auch bei 10° C keine Radikale nachgewiesen werden. Die ungewöhnlich lange Lebensdauer von 3a läßt voraussagen, daß das kürzlich 10° 0 als "unbekanntes Radikal unbekannter Lebenszeit" diskutierte Radikal 10° 0 (10° 1 Radikal engeleichbare Lebensdauer haben wird.

1,3-Diaza-allyl-Radikale erhielten wir bei der Umsetzung der Amidine $\underline{2a}$ (R¹ = R³ = C(CH₃)₃, R² = H) und $\underline{2b}$ (R¹ = R³ = C(CH₃)₃, R² = CH₃) mit t-Butoxy-Radi-

kalen (s.o.) in Isopentan bei - 70° C. Im Gegensatz zum langlebigen <u>3a</u> sind die Radikale <u>4a</u> und <u>4b</u> so instabil, daß sie nur bei kontinuierlicher Erzeugung bei tiefer Temperatur nachgewiesen werden können. Die größere Stabilität von <u>3a</u> dürfte darauf beruhen, daß bei der Dimerisierung der 1,2-Diaza-allyl-Radikale stets das Allyl-C-Atom beteiligt ist¹), das in <u>3a</u> durch zwei geminale t-Butylgruppen sterisch stark abgeschirmt ist.

Führt man die Oxidation von $\underline{1a}$, $\underline{2a}$ und $\underline{2b}$ mit t-Butoxy-Radikalen in Gegenwart von t-Butylhydroperoxid und Luftsauerstoff durch, so erhält man die Nitroxide $\underline{5}$, $\underline{6a}$ und $\underline{6b}$, von denen $\underline{6a}$ bereits auf anderem Wege erhalten wurde $\underline{4}$).

	R ¹	R²	R ³	a N		a ^H	g
<u>3a</u>	t-Bu ^{a)}	t-Bu	C ₆ H ₅	9,6 ^{b)}	11,0	3,9 (o,p) 1,2 (m) ^{c)}	2,0030
<u>3b</u>	t-Bu	t-Bu	C_6D_5	9,6	11,0	_	2,0030
<u>4a</u>	t-Bu	н	t-Bu	8,5	8,5	3,0	2,0046
<u>4b</u>	t-Bu	CH ₃	t-Bu	8,6	8,6	2,5	2,0050
<u>5</u>	t-Bu	t-Bu	C ₆ H ₅	12,1	2,7	2,9 (o,p) ^{d)}	2,0047
<u>6a</u>	t-Bu	н	t-Bu	9,3	3,25	1,3	2,0061
<u>6b</u>	t-Bu	CH ₃	t-Bu	10,1	3,4	1,4	2,0061

ESR-Kopplungskonstanten (in Gauss) und g-Faktoren

<u>Danksagung:</u> Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der chemischen Industrie für finanzielle Unterstützung, der Studienstiftung des Deutschen Volkes für ein Promotionsstipendium.

Literaturhinweise und Fußnoten

- P.A.S. Smith, Open-chain nitrogen compounds, W.A. Benjamin Inc., New York 1966, Vol. I, S. 183; Vol. II, S. 166
- +) <u>la</u> wurde aus Di-t-butyl-ketimin und Phenylhydrazin in Gegenwart katalytischer Mengen HCl in 56% Ausbeute dargestellt (Fp.: 98°; NMR-Daten: Singuletts bei δ = 1,32 und 1,48 ppm für je 9H, Multiplett bei 6,6 7,5 ppm für 6H)
- 2) P.J. Krusic und J.K. Kochi, J.Amer.Chem.Soc. <u>90</u>, 7155 (1968)
- 3) G.D. Mendenhall, D. Griller und K.U. Ingold, Chem. in Brit. 10, 248 (1974)
- 4) H.G. Aurich, Angew. Chem. <u>79</u>, 825 (1967)

a) t-Bu = $C(CH_3)_3$; b) wahrscheinlich N_1 ; c) 0,24 (18 H); d) a_m^H nicht aufgelöst